If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+36X-128=0
a = 1; b = 36; c = -128;
Δ = b2-4ac
Δ = 362-4·1·(-128)
Δ = 1808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1808}=\sqrt{16*113}=\sqrt{16}*\sqrt{113}=4\sqrt{113}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{113}}{2*1}=\frac{-36-4\sqrt{113}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{113}}{2*1}=\frac{-36+4\sqrt{113}}{2} $
| 4+3n=14 | | 10/3=6u | | 20=13+7b | | (X+12)+(x+18)=180 | | F(t)=16t-4t2 | | 4s+18=114 | | 8(-3)x=13 | | 17x-1=15x+1 | | 10-3t=t2 | | 8=3x-114 | | (x-2)^=36 | | 442=550-k(1) | | 442=550-k1 | | x+79°=2x-37° | | 8(3y-2)=3(10-y)+35 | | 3x-1=3.5 | | 2(1-4x)=(-1/2x) | | -2.5x+57.9=15.9+1.8x | | 3x-1*8=28 | | 2n(5n-3)=0 | | 3x²+10x+8=0 | | 100p-7500=0.3*100p | | 8-9+10-6=b | | 2x0.2=4x-0.6 | | 4x^2+10x-144=0 | | 3=5+2u | | 16x-4+9x-6+54=180 | | 10+5*2=y | | (q+5)^2+3q^2=169 | | 2r-3+9=r | | −3(−2x−2)−3x+5=22 | | 35x=14x+5 |